
LECTURE 1

Interacting Particle Systems on Zd, d ≥ 1.

Definition, construction, three examples.



§ GOAL

As area of research, IPS started in the 1970s, with pioneers

Spitzer, Dobrushin, Harris, Holley, Stroock, Liggett, Griffeath, Durrett

Over the years, IPS has turned out to be a fertile breeding ground
for the development of new ideas and techniques in mathematical
statistical physics, including graphical representation, coupling,
duality, correlation inequalities.

We start by defining what an IPS is. We focus on spin-flip
systems, which constitute a particularly tractable class. Within
this class we focus on three examples:

Stochastic Ising Model (SIM)
Voter Model (VM)
Contact Process (CP) 1/36



Standard references for IPS on Zd are:

T.M. Liggett, Interacting Particle Systems,

Grundlehren der mathematische Wissenschaften 276,

Springer, New York, 1985.

T.M. Liggett, Stochastic Interacting Systems:

Contact, Voter and Exclusion Processes,

Grundlehren der mathematische Wissenschaften 324,

Springer, Berlin, 1999.

For most of the results to be described below, references can be

found in these monographs.
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§ DEFINITIONS

An Interacting Particle System (IPS) formally is a Markov process
ξ = (ξt)t≥0 on the state space

Ω = {0,1}Z
d
, d ≥ 1,

where

ξt = {ξt(x): x ∈ Zd}

denotes the configuration at time t, with ξt(x) = 1 or 0 meaning
that there is a ‘particle’ or a ‘hole’ at site x at time t, respectively.
Alternative interpretations are

1 = spin-up/democrat/infected
0 = spin-down/republican/healthy.
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The configuration changes with time, which models how:
• magnetic atoms flip up and down as a result of noise,
• two political parties evolve in an election campaign,
• a virus spreads through a population.

The evolution is specified via a set of local transition rates

c(x, η), x ∈ Zd, η ∈ Ω,

playing the role of the rate at which the state at site x changes
in the configuration η, i.e.,

η → ηx

with ηx the configuration obtained from η by changing the state
at site x (either 0 → 1 or 1 → 0). Since there are only two
possible states at each site, the IPS is called a spin-flip system.
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If c(x, η) depends on η only via η(x), the value of the spin at x,
then ξ consists of independent spin-flips. In general, however,
the rate to flip the spin at x depends on the spins located in the
neighbourhood of x (possibly even on all spins). This dependence
models an interaction between the spins at different sites.

In order for ξ to be well-defined, some restrictions must be placed
on the local transition rates: c(x, η) must depend only weakly on
the states at far away sites (formally, η 7→ c(x, η) is continuous
in the product topology) and must be not too large (formally,
bounded away from infinity in some appropriate sense).

Liggett 1985
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SHIFT-INVARIANT ATTRACTIVE SYSTEMS

• Shift-invariant

Typically it is assumed that

c(x, η) = c(x+ y, τyη) ∀ y ∈ Zd

with τy the shift of space over y, i.e.,

(τyη)(x) = η(x− y), x ∈ Zd.

This property says that the flip rate at x only depends on the

configuration η seen relative to x, which is natural when the

interaction between spins is homogeneous in space.
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• Attractive

Another useful assumption is that the interaction favors spins
that are alike, i.e.,

η � η′ →
{
c(x, η) ≤ c(x, η′) if η(x) = η′(x) = 0,
c(x, η) ≥ c(x, η′) if η(x) = η′(x) = 1,

where � denotes the partial order in Ω. This property says that
the spin at x flips up faster in η′ than in η when η′ is everywhere
larger than η, and flips down slower.

In other words, the dynamics preserves �. Spin-flip systems with
this property are called attractive.
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§ THREE EXAMPLES Liggett 1985

1. SIM: Stochastic Ising model

This model is defined on Ω = {−1,1}Zd with rates

c(x, η) = exp[−βη(x)
∑
y∼x

η(y)], β ≥ 0,

which means that spins prefer to align with the majority of
the neighbouring spins.

2. VM: Voter model

This model is defined on Ω = {0,1}Zd with rates

c(x, η) =
1

2d

∑
y∼x

1{η(y) 6=η(x)},

which means that sites choose a random neighbour at rate
1 and adopt the opinion of that neighbour.
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3. CP: Contact process

This model is defined on Ω = {0,1}Zd with rates

c(x, η) =

 λ
∑
y∼x

η(y), if η(x) = 0,

1, if η(x) = 1,
λ ≥ 0,

which means that infected sites become healthy at rate 1 and
healthy sites become infected at rate λ times the number of
infected neighbours.

EXERCISE:

Check that these three examples indeed are shift-invariant and
attractive.
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In the sequel we will discuss each model in some detail. We will

see that the properties

shift-invariant

attractive

allow for a number of interesting conclusions concerning their

equilibrium, as well as their convergence to equilibrium.
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EXERCISE: (= digression)

Look up the following notions:

(1) Stochastic ordering of two IPSs.

(2) Ordered coupling of two IPSs.

(3) Strassen theorem about stochastic ordering being equivalent

to ordered coupling.
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§ CONVERGENCE TO EQUILIBRIUM

Write [0] and [1] to denote the configurations η ≡ 0 and η ≡ 1,

respectively. These are the smallest, respectively, the largest

configurations in the partial order, and hence

[0] � η � [1], ∀ η ∈ Ω.

Since the dynamics preserves the partial order (see below), we

obtain information about what happens when the system starts

from any η ∈ Ω by comparing with what happens when it starts

from [0] or [1].
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An IPS can be described by semigroups of transition kernels

(Pt)t≥0.

Formally, Pt is an operator acting on Cb(Ω), the space of bounded
continuous functions on Ω, as

(Ptf)(η) = Eη[f(ξt)], η ∈ Ω, f ∈ Cb(Ω).

If this definition holds on a dense subset of Cb(Ω), then it
uniquely determines Pt. Formally, we can write Pt = etL with
L the generator of the IPS:

(Lf)(η) =
∑
x∈Zd

c(x, η)[f(ηx)− f(η)].

EXERCISE:

Check that P0 is the identity and that Ps+t = Pt◦Ps for all s, t ≥ 0
(where ◦ denotes composition).
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Alternatively, the semigroup can be viewed as acting on the space

of probability measures µ on Ω via the duality relation∫
Ω
f d(µPt) =

∫
Ω

(Ptf) dµ, f ∈ Cb(Ω).

LEMMA 1.1

Let (Pt)t≥0 denote the semigroup of transition kernels that is

associated with ξ. Write δηPt to denote the law of ξt conditional

on ξ0 = η (which is a probability distribution on Ω). Then

t 7→ δ[0]Pt is stochastically increasing,
t 7→ δ[1]Pt is stochastically decreasing.
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PROOF

For t, h ≥ 0,

δ[0]Pt+h = (δ[0]Ph)Pt � δ[0]Pt,

δ[1]Pt+h = (δ[1]Ph)Pt � δ[1]Pt,

where we use that

δ[0]Ph � δ[0], δ[1]Ph � δ[1],

for any h ≥ 0, and we use the Strassen theorem and the coupling

representation that goes with the partial order. 2
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COROLLARY 1.2

Both

ν = lim
t→∞

δ[0]Pt = lower stationary law,

ν = lim
t→∞

δ[1]Pt = upper stationary law,

exist as probability distributions on Ω and are equilibria for the

dynamics. Any other equilibrium π satisfies ν � π � ν.

PROOF

This is immediate from Lemma 1.1 and the sandwich

δ[0]Pt � δηPt � δ[1]Pt, η ∈ Ω, t ≥ 0.

2
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The class of all equilibria for the dynamics is a convex set in the

space of signed bounded measures on Ω. An element of this set

is called extremal when it is not a proper linear combination of

any two distinct elements in the set, i.e., is not of the form

pν1 + (1− p)ν2, p ∈ (0,1), ν1 6= ν2.
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LEMMA 1.3

Both ν and ν are extremal.

PROOF

We give the proof for ν only. Suppose that

ν = pν1 + (1− p)ν2, ν1 6= ν2, p ∈ (0,1).

Since ν1 and ν2 are equilibria, by Corollary 1.2 we have∫
Ω
fdν1 ≤

∫
Ω
fdν,

∫
Ω
fdν2 ≤

∫
Ω
fdν,

for any f non-decreasing. Since∫
Ω
fdν = p

∫
Ω
fdν1 + (1− p)

∫
Ω
fdν2

and p ∈ (0,1), both inequalities must be equalities. Integrals of
non-decreasing functions determine the measure w.r.t. which is
being integrated, and so it follows that ν1 = ν = ν2. 2
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EXERCISE

Prove that integrals of non-decreasing functions determine the
measure.

COROLLARY 1.4

The following three properties are equivalent (for shift-invariant
and attractive spin-flip systems):

1. ξ is ergodic (i.e., δηPt has the same limiting distribution as
t→∞ for all η).

2. There is a unique stationary distribution,

3. ν = ν.

PROOF

The claim is obvious in view of the sandwich of the configurations
between [0] and [1]. 2
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REMARK

If ν 6= ν, then there is no guarantee that limt→∞ µPt = ν exists for

arbitrary µ. In fact, stronger assumptions than attractiveness are

needed to make that happen. We do know that any convergent

subsequence has a limit ν such that ν � ν � ν.
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§ Example 1: Stochastic Ising Model

For β = 0, c(x, η) = 1 for all x and η, in which case the dynamics
consists of independent spin-flips, up and down at rate 1. In that
case ν = ν = (1

2δ−1 + 1
2δ+1)⊗Z

d
.

For β > 0 the dynamics has a tendency to align spins. For small
β this tendency is weak, for large β it is strong. It turns out that
in d ≥ 2 there is a critical value βd ∈ (0,∞) such that

β ≤ βd : ν = ν,
β > βd : ν 6= ν.

The proof uses the so-called Peierls argument. In the first case
there is a unique ergodic equilibrium, which depends on β and is
denoted by νβ.
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In the second case there are two extremal equilibria, both of
which depend on β and are denoted by

ν+
β = plus state with m+

β =
∫
Ω η(0)ν+

β (dη) > 0,

ν−β = minus-state with m−β =
∫
Ω η(0)ν−β (dη) < 0,

which are called the magnetised states. Note that ν+
β and ν−β

are images of each other under the swapping of +1’s and −1’s
and so m+

β = −m−β = mβ.

It can be shown that in d = 2 all equilibria are a convex combi-
nation of ν+

β and ν−β , while in d ≥ 3 other equilibria are possible
as well (e.g. not shift-invariant) when β is large enough. It turns
out that β1 = ∞, i.e., in d = 1 the SIM is ergodic for all β > 0.
It is known that β2 = 1

2 log(1 +
√

2).
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Example 2: Voter Model

Note that [0] and [1] are both traps for the dynamics (if all sites
have the same opinion, then no change of opinion occurs), and
so

ν = δ[0], ν = δ[1].

It turns out that in d = 1,2 these are the only extremal equilibria,
while in d ≥ 3 there is a 1-parameter family of extremal equilibria

(νρ)ρ∈[0,1]

with ρ the density of 1’s, i.e., νρ(η(0) = 1) = ρ. This fact is
remarkable because the VM has no parameter. For ρ = 0 and
ρ = 1 these equilibria coincide with δ[0] and δ[1], respectively.
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REMARK

The dichotomy d = 1,2 versus d ≥ 3 is directly related to simple

random walk being recurrent in d = 1,2 and transient in d ≥ 3.

This property has to do with the fact that the VM is dual to a

system of coalescing random walks.

EXERCISE

Give the graphical representation of the VM and indicate how

duality is obtained via time reversal.
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§ Example 3: Contact Process

Note that [0] is a trap for the dynamics (if all sites are healthy,
then no infection will ever occur), and so

ν = δ[0].

For small λ infection is transmitted slowly, for large λ rapidly. It
turns out that in d ≥ 1 there is a critical value λd ∈ (0,∞) such
that

λ ≤ λd : ν = δ[0] = extinction, no epidemic,
λ > λd : ν 6= δ[0] = survival, epidemic.
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LEMMA 1.5 Liggett 1985, Durrett 1988

(i) dλd ≤ λ1.

(ii) 2dλd ≥ 1.

(iii) λ1 <∞.

Note that (i–iii) combine to yield that 0 < λd < ∞ for all d ≥ 1,
so that the phase transition occurs at a non-trivial value of the
infection rate parameter.

EXERCISE

Give the proof of (i–ii) with the help of coupling.

REMARK

Sharp estimates are available for λ1, but these require heavy
machinery. Numerically, λ1 ≈ 1.6494. A series expansion of λd
in powers of 1/2d is known up to several orders, but again the
proof is very technical.
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§ THE COX-GREVEN FINITE SYSTEMS SCHEME

As a prelude to Lectures 2-4, in which we take a closer look
at SIM, VM, CP on finite random graphs, we describe what is
known about these processes on a large finite torus in Zd,

ΛN = [0, N)d ∩ Zd, N ∈ N,
endowed with periodic boundary conditions.

The behaviour on ΛN is different from that on Zd. In particular,
there is an N-dependent characteristic time scale αN on which
the process notices that ΛN differs from Zd, resulting in different
behaviour for short, moderate and long times.

A systematic study was initiated in
Cox, Greven 1990, Cox, Greven, Shiga 1995+1998

WARNING: The text on pages 28–36 is technical.
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§ SIM ON THE TORUS

Since |ΛN | <∞, we have

νN = νN = νNβ with
∫

Ω
η(0)νNβ (dη) = 0 ∀β ∈ (0,∞),

i.e., on any finite lattice eventually the average magnetisation
vanishes. An interesting question is: How long does it take the
SIM to loose its magnetisation and what does it do along the
way?

Let
MN

t =
1

|ΛN |
∑
x∈ΛN

ξNt (x)

denote the magnetisation at time t. Suppose that the law of
ξN0 is the restriction to ΛN of the equilibrium measure ν−β on Zd,
which has magnetisation m−β . 28/36



THEOREM 1.6 Cox, Greven 1990

Bovier, Eckhoff, Gayrard, Klein 2002

(a) For β < βd and any TN →∞,

lim
N→∞

L
[
MN

TN

]
= δ0.

(b) For β > βd,

lim
N→∞

L
[
MN

sαN

]
= mZs

β , Z0 = −,

where (Zs)s≥0 is the Markov chain on {−,+} jumping at rate 1,

and αN is the average crossover time between the magnetisations

associated with ν−β and ν+
β on Zd restricted to ΛN .

For β > βd it can further be shown that (ξNsαN)s≥0 converges in

distribution to νZsβ as N →∞.
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The computation of αN is hard and belongs to the area
of metastability. It is expected that

αN = exp
[
κd(β)Nd−1(1 + o(1))

]
with κd(β) the free energy of the so-called Wulff droplet
of volume 1

2
in Rd representing the barrier between ν−β , ν

+
β .

The proof remains a challenge.

Schonmann, Shlosman 1998
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§ VM ON THE TORUS

Since |ΛN | <∞, we have

νN = [0]N , νN = [1]N ,

i.e., on any finite lattice eventually consensus is reached. An
interesting question is: How long does it take the VM to reach
consensus and what does it do along the way?

Let

ONt =
1

|ΛN |
∑
x∈ΛN

ξNt (x)

denote the fraction of 1-opinions at time t. Suppose that the
law of ξN0 is the restriction to ΛN of a shift-invariant and ergodic
probability measure on Zd with mean θ ∈ [0,1].
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THEOREM 1.7 Cox, Greven 1990

(a) For d = 1,2 and any TN →∞,

lim
N→∞

L
[
ONTN

]
= (1− θ)δ0 + θδ1.

(b) For d ≥ 3,

lim
N→∞

L
[
ONsαN

]
= Zs, Z0 = θ,

where αN = |ΛN | and (Zs)s≥0 is the Fisher-Wright diffusion on

[0,1] with diffusion constant 1/Gd, the inverse of the average

number of visits to 0 of simple random walk on Zd.

EXERCISE

Give a heuristic explanation of (a).
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§ CP ON THE TORUS

Since |ΛN | <∞, we have

νN = νN = [0]N ∀λ ∈ (0,∞),

i.e., on a finite lattice every infection eventually becomes extinct,
irrespective of the infection rate.

An interesting question is the following: Starting from [1]N , how
long does it take the CP to reach [0]N? In particular, we want
to know the extinction time

τ[0]N
= inf{t ≥ 0: ξNt = [0]N}.

We expect this time to grow slowly with N when λ < λd and
rapidly with N when λ > λd, where λd is the critical infection
threshold for the infinite lattice Zd.
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Let
INt =

1

|ΛN |
∑
x∈ΛN

ξNt (x)

denote the fraction of infected vertices at time t. Suppose that
ξN0 = [1]N .

THEOREM 1.8 Cox, Greven 1990

(a) For λ < λd and any TN →∞,

lim
N→∞

L
[
INTN

]
= δ0.

(b) For λ > λd,

lim
N→∞

L
[
INsαN

]
= Zs, Z0 = 1,

where αN = E[1]N
(τ[0]N

) and (Zs)s≥0 is the Markov chain on
{0,1} that jumps from 1 to 0 at rate 1 and is absorbed in 0.
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THEOREM 1.9

Durrett, Liu 1988, Durrett, Schonmann 1988, Mountford 1993+1999

There exist C−(λ), C+(λ) ∈ (0,∞) such that

λ < λd : lim
N→∞

αN
log |ΛN |

= C−(λ),

λ > λd : lim
N→∞

logαN
|ΛN |

= C+(λ).

In the subcritical phase the extinction time grows logarithmically
fast with the volume of ΛN , while in the supercritical phase it
grows exponentially fast. This is a rather dramatic dichotomy.
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EXERCISE

Explain heuristically where the dichotomy comes from, i.e., give

a physical rather than a mathematical reason for the difference

between the two phases.

EXERCISE

Why is it plausible that the distribution of the extinction time is

exponential on the scale of its mean?

Rough polynomial bounds on αN are available in d = 1 at λ = λ1.

Duminil-Copin, Tassion, Teixeira 2017
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