
LECTURE 2

The Stochastic Ising Model (SIM)



§ SIM ON GRAPHS

Let G = (V,E) be a finite connected non-oriented graph. Ising
spins are attached to the vertices V and interact with each other
along the edges E.

1. The energy associated with the configuration σ = (σi)i∈V ∈
Ω = {−1,+1}V is given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E
σiσj − h

∑
i∈V

σi

where J > 0 is the ferromagnetic interaction strength and h > 0
is the external magnetic field.
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2. Spins flip according to Glauber dynamics (σGt )t≥0,

∀σ ∈ Ω ∀ j ∈ V : σ → σj at rate e−β[H(σj)−H(σ)]+

where σj is the configuration obtained from σ by flipping the spin
at vertex j, and β > 0 is the inverse temperature.

3. The Gibbs measure

µ(σ) =
1

Ξ
e−βH(σ), σ ∈ Ω,

is the reversible equilibrium of this dynamics.

4. Three sets of configurations play a central role:

m = metastable state

c = crossover state

s = stable state. 2/34
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Caricature picture of the free energy landscape

[free energy = energy − entropy]
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FORMAL DEFINITIONS:

(a) The stable state is the set of configurations having minimal

energy:

s =
{
σ ∈ Ω: H(σ) = min

ζ∈Ω
H(ζ)

}
.

(b) The metastable state is the set of configurations not in s

that lie at the bottom of the next deepest valley:

m =
{
σ ∈ Ω \ s : Vσ = max

ζ∈Ω\s
Vζ
}

with Vζ the minimal amount a path from ζ needs to climb in

energy in order to reach an energy < H(ζ).

(c) The crossover state c is the set of configurations realising

the min-max for paths connecting m and s.
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§ SIM ON THE COMPLETE GRAPH

Let us see what happens on the complete graph with N vertices.
This is a mean-field setting.

The ferromagnetic interaction strength is chosen to be J = N−1.
It can be shown that the empirical magnetisation

mN
t =

1

N

∑
i∈[N ]

(σNt )i

performs a continuous-time random walk on the 2N−1-grid in
[−1,+1], in a potential that is given by the finite-volume free
energy per vertex

fNβ,h(m) = −1
2m

2 − hm+ β−1IN(m)

with an entropy term

IN(m) = −
1

N
log

( N
1+m

2 N

)
. 5/34



In the limit N → ∞, the empirical magnetisation performs a

Brownian motion on [−1,+1], in a potential that is given by the

infinite-volume free energy per vertex

fβ,h(m) = −1
2m

2 − hm+ β−1I(m)

with

I(m) = 1
2(1 +m) log(1 +m) + 1

2(1−m) log(1−m),

where a redundant shift by − log 2 is dropped.

The above formulas describe what is called the
Curie-Weiss model with Glauber dynamics.
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m

fβ,h(m)

m∗− m∗+
m∗

−h

1−1

•

•
•

The free energy per vertex fβ,h(m) at magnetisation m

(caricature picture with m = m∗−, c = m∗, s = m∗+).
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THEOREM 2.1 Bovier, Eckhoff, Gayrard, Klein 2000

If β > 1 and h ∈ (0, χ(β)), then

ECW
m−N

(τ
m+
N

) = K eNΓ[1 + o(1)], N →∞,

where m−N ,m
+
N are sets of configurations for which the discrete

magnetisations tends to the continuum magnetisations m∗−,m
∗
+,

Γ = β [fβ,h(m∗)− fβ,h(m∗−)]

K = πβ−1

√√√√1 +m∗

1−m∗
1

1−m∗2−

1

[−f ′′β,h(m∗)]f ′′β,h(m∗−)

and

χ(β) =
√

1− 1
β −

1
2β log

[
β

(
1 +

√
1− 1

β

)2
]
. 8/34



The conditions on β, h guarantee that fβ,h has a double-well
shape and represents the parameter regime for which metastable
behaviour occurs.

β

χ(β)

0

1

1
•

metastable regime

The expression for the average crossover time in Theorem 2.1 is
called the Kramers formula.
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§ SIM ON RANDOM GRAPHS

The goal of this lecture is to investigate what can be said
when the complete graph is replaced by a random graph.

Our target will be to derive Arrhenius laws, i.e.,

Em[τs] = K eNΓ[1 + o(1)], N →∞, β fixed,

Em[τs] = K eβΓ[1 + o(1)], β →∞, N fixed.

In general Γ,K are random and are hard to identify. In fact,

in what follows we will mostly have to content ourselves with

bounds on these quantities and with convergence in probability

under the law of the random graph.
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§ SIM ON THE ERDŐS-RÉNYI RANDOM GRAPH

Erdős-Rényi random graph: edge percolation

Take the complete graph with N vertices and retain edges with

probability p ∈ (0,1).
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THEOREM 2.2 den Hollander, Jovanovski 2021

On the Erdős-Rényi random graph with N vertices, for J = 1/pN ,
β > 1 and h ∈ (0, χ(β)),

EER
m−N

(τ
m+
N

) = NEN ECW
m−N

(τ
m+
N

), N →∞,

where EN is a random exponent that satisfies

lim
N→∞

PERN(p)

(
|EN | ≤ 11

6
β
p(m∗ −m−)

)
= 1,

with PERN(p) the law of the random graph.

Apart from a polynomial error term, the crossover time is the same
on the Erdős-Rényi random graph as on the complete graph, after
the change of interaction from J = 1/N to J = 1/pN .
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The asymptotic estimate of the crossover time is uniform in the
starting configuration drawn from the set m−N .

Note that J needs to be scaled up by a factor 1/p in order to
allow for a comparison with the Curie-Weiss model: in the Erdős-
Rényi model every spin interacts with ∼ pN spins rather than N

spins. The critical value in equilibrium changes from 1 to 1/p:

Bovier, Gayrard 1993

On the complete graph the prefactor is constant and computable.

On the Erdős-Rényi random graph it is random and more involved.
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The proof of Theorem 2.2 follows the pathwise approach to

metastability.

In particular, the empirical magnetisation (mN
t )t≥0 is monitored

on a mesoscopic space-time scale. The difficulty is that the

lumping technique typical for mean-field settings is no longer

available: after projection the Markov property is lost.

The way around this problem is via coupling: sandwich (mN
t )t≥0

between two Curie-Weiss models with a perturbed magnetic field

hN , tending to h as N → ∞. The computations are rather

elaborate and are beyond the scope of the present mini-course.
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§ REFINEMENT OF THE PREFACTOR

THEOREM 2.3 Bovier, Marello, Pulvirenti 2021

For β > 1, h > 0 small enough and s > 0,

lim
N→∞

PERN(p)

C1e−s ≤
EER
m−N

(τ
m+
N

)

ECW
m−N

(τ
m+
N

)
≤ C2es

 ≥ 1− k1e−k2s
2
,

where k1, k2 > 0 are absolute constants, and C1 = C1(p, β) and

C2 = C2(p, β, h).

This theorem shows that the prefactor is a tight random variable,

and hence constitutes a considerable sharpening of Theorem 2.2.
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The proof of Theorem 2.3 uses the potential-theoretic approach

to metastability.

The local homogeneity of the Erdős-Rényi random graph again
plays a crucial role: it turns out that the exact same test functions
and test flows that are employed in relevant variational estimates
work for the Curie-Weiss model and can be used to give sharp
upper and lower bounds on the average crossover time.

The better control on the prefactor comes at a price:

• The magnetic field has to be taken small enough.

• The dynamics starts from the last-exit biased distribution on

m−N for the transition from m−N to m+
N , rather than from an

arbitrary configuration in m−N .

16/34



§ TECHNIQUES

Proofs rely on elaborate techniques:

isoperimetric inequalities
concentration estimates
capacity estimates
coupling techniques
coarse-graining techniques
· · ·

These techniques exploit the fact that in the dense regime the

Erdős-Rényi random graph is locally homogeneous.

Homogenisation
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§ SIM ON THE INHOMOGENEOUS ERRG

Theorem 2.3 can be extended to the inhomogeneous ERRG. The
Hamiltonian becomes

H(σ) = −
∑

(i,j)∈E
Jijσiσj − h

∑
i∈V

σi

with Jij > 0 independent random variables. An example is
Bernoulli with probability r( iN ,

j
N ), where

r(x, y), x, y ∈ [0,1],

is a continuous reference graphon. A special case is the rank-
1 choice r(x, y) = v(x)v(y) for some weight function v(x), x ∈
[0,1], which corresponds to the Chung-Lu Random Graph.

Bovier, den Hollander, Marello, Pulvirenti, Slowik 2022 + 2024 18/34



§ SIM ON SPARSE GRAPHS

ERRG is a dense graph. We next consider sparse graphs. Given
a finite connected non-oriented multigraph

G = (V,E),

the Hamiltonian is

H(σ) = −
J

2

∑
(i,j)∈E

σiσj −
h

2

∑
i∈V

σi, σ ∈ Ω,

where J > 0 is the ferromagnetic pair potential and h > 0 is the
magnetic field.

We write PG,βσ to denote the law of (σGt )t≥0 given σG0 = σ.

The upper indices G, β exhibit the dependence on the underlying
graph G and the interaction strength β between neighbouring spins.
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It is easy to check that s = {�} for all G because J, h > 0. For
general G, however, m is not a singleton, but we will be interested
in those G for which the following hypothesis is satisfied

(H) m = {�}.

The energy barrier between � and � is

Γ? = H(C?)−H(�),

where C? = c is the set of critical configurations realising the
min-max for the crossover from � to �, all of which have the
same energy.

THEOREM 2.4 Bovier, den Hollander 2015

There exists a K? ∈ (0,∞), called prefactor, such that

lim
β→∞

e−βΓ? EG,β� (τ�) = K?.
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� C? �
ξ

H(ξ)

Γ?

Schematic picture of H and �,� and Γ?, C?.
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The validity of Theorem 2.4 does not rely on the details of the

graph G, provided it is finite, connected and non-oriented. For

concrete choices of G, the task is to identify the critical triplet

(C?,Γ?,K?).

For deterministic graphs this task has been successfully carried

out for a large number of examples. However, for random graphs

the triple is random, and identification represents a very serious

challenge.

In what follows we focus on the CM.
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§ SIM ON THE CONFIGURATION MODEL

The CM is a sparse graph that can be generated via a simple
pairing algorithm.

size 6
degrees (1,3,1,3,2,4)
randomly pair half-edges
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WARNING: The text on pages 24-34 is rather technical.
We go over it in leaps to sketch the main picture.

In order to state our main theorems, we need some notations
and definitions.

1. Fix N ∈ N. With each vertex i ∈ [N ] we associate a random
degree di, in such a way that

(di)i∈[N ]

are i.i.d. with probability distribution f conditional on the event
{
∑
i∈[N ] di = even}. Consider a uniform matching of the half-

edges, leading a multi-graph CMN satisfying the requirement
that the degree of vertex i is di for i ∈ [N ].

The total number of edges is 1
2
∑
i∈[N ] di.
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2. Throughout the sequel we write PN to denote the law of
the random multi-graph CMN generated by the Configuration
Model.

3. To avoid degeneracies we assume that

dmin = min{k ∈ N : f(k) > 0} ≥ 3,

dave =
∑
k∈N

kf(k) <∞,

i.e., all degrees are at least three and the average degree is finite.
In this case CMN is connected with high probability (whp), i.e.,
with probability tending to 1 as N →∞.

4. Along the way we need a technical function that allows us
to quantify certain properties of the energy landscape, which we
introduce next. Later we provide the underlying heuristics.
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For x ∈ (0, 1
2] and δ ∈ (1,∞), define

Iδ (x) = inf
{
y ∈ (0, x] : 1 < xx(1−1/δ) (1− x)(1−x)(1−1/δ)

× (1− x− y)−(1−x−y)/2 (x− y)−(x−y)/2 y−y
}
.

x

Iδ(x)

Plot of the function x 7→ Iδ(x) for δ = 6.
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§ MAIN THEOREMS

Dommers, den Hollander, Jovanovski, Nardi 2017

We want to prove Hypothesis (H) and also to identify the critical
triplet for CMN , which we henceforth denote by (C?N ,Γ

?
N ,K

?
N), in

the limit as N →∞.

Our first theorem settles Hypothesis (H) for small h/J. Suppose
that

h

J
<

2Idave

(
1
2

)
− 1

2

(
1− 4Idmin

(
1
2

))2 (
1− 2Idmin

(
1
2

))−1(
1
dave

+ 1
2

) .

THEOREM 2.5.

If the above inequality is satisfied, then

lim
N→∞

PN
(
CMN satisfies (H)

)
= 1. 27/34



Our second and third theorem provide upper and lower bounds on
Γ?N . Label the vertices of the graph in order of increasing degree.
Let γ : � → � be the path that successively flips the vertices
1, . . . , N (in that order), and for M ∈ [N ] let `M =

∑
i∈[M ] di.

THEOREM 2.6

Define

M̄ = M̄

(
h

J

)
= min

{
M ∈ [N ] :

h

J
≥ `M+1

(
1−

`M+1

`N

)
− `M

(
1−

`M
`N

)}
,

and note that M̄ < N/2. Then with high probability

Γ?N ≤ Γ+
N , Γ+

N = J`M̄

(
1−

`M̄
`N

)
− hM̄ ±O

(
`
3/4
N

)
.
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THEOREM 2.7

Define

M̃ = min
{
M ∈ [N ] : `M ≥ 1

2`N
}
.

Then whp

Γ?N ≥ Γ−N , Γ−N = J dave Idave

(
1
2

)
N − hM̃ − o(N).

COROLLARY 2.8

Under Hypothesis (H), Theorems 2.6–2.7 yield

lim
β→∞

PG,β�

(
eβ(Γ−N−ε) ≤ τ� ≤ eβ(Γ+

N+ε)
)

= 1 ∀ ε > 0.

REMARK: For simple degree distributions, like Dirac or power
law, the quantities M̄ , `M̄ , M̃ can be computed explicitly.
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The bounds in Theorems 2.6–2.7 are tight in the limit of large

degrees. Indeed, by the law of large numbers we have that

`N
`M̄
`N

(
1−

`M̄
`N

)
≤ 1

4`N = 1
4daveN [1 + o(1)] .

Hence

Γ+
N

Γ−N
=

1
4dave [1 + o (1)]− h

J
M̄
N + o(1)

daveIdave

(
1
2

)
− h
J
M̃
N − o(1)

.

In the limit as dave →∞ we have Idave

(
1
2

)
→ 1

4, in which case the

above ratio tends to 1.
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§ DISCUSSION

1. The integer M̄ has the following interpretation. The path

γ : � → � is obtained by flipping (−1)-valued vertices to (+1)-

valued vertices in order of increasing degree. Up to fluctuations

of size o(N), the energy along γ increases for the first M̄ steps

and decreases for the remaining N − M̄ steps.

2. The integer M̃ has the following interpretation. To obtain

our lower bound on Γ?N we consider configurations whose (+1)-

valued vertices have total degree at most 1
2`N . The total number

of (+1)-valued vertices in such type of configurations is at most

M̃ .
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3. If we consider all sets on CMN that are of total degree x`N
and share y`N edges with their complement, then Iδ(x) represents
(a lower bound on) the least value for y such that the average
number of such sets is at least 1. In particular, for smaller values
of y this average number is exponentially small.

4. We believe that Hypothesis (H) holds as soon as

0 < h < (dmin − 1)J,

i.e., we believe that in the limit as β → ∞ followed by N → ∞
this choice of parameters corresponds to the metastable regime
of our dynamics, i.e., the regime where (�,�) is a metastable
pair.

5. The scaling behaviour of Γ?N ,K
?
N as N → ∞, as well as the

geometry of C?N , are hard to capture. Here are some conjectures.

Dommers, den Hollander, Jovanovski, Nardi 2017 32/34



CONJECTURE 2.9

There exists a γ? ∈ (0,∞) such that

lim
N→∞

PN
(∣∣∣N−1Γ?N − γ

?
∣∣∣ > δ

)
= 0 ∀ δ > 0.

CONJECTURE 2.10

There exists a c? ∈ (0,1) such that

lim
N→∞

PN
(∣∣∣N−1 log |C?N | − c

?
∣∣∣ > δ

)
= 0 ∀ δ > 0.

CONJECTURE 2.11

There exists a κ? ∈ (1,∞) such that

lim
N→∞

PN
(∣∣∣|C?N |K?

N − κ
?
∣∣∣ > δ

)
= 0 ∀ δ > 0.
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6. It is shown in Dommers 2017 that for a random regular graph
with degree r ≥ 3, there exist constants 0 < γ?−(r) < γ?+(r) < ∞
such that

lim
N→∞

lim
β→∞

EN
(
PCMN
�

(
eβNγ

?
−(r) ≤ τ� ≤ eβNγ

?
+(r)

))
= 1

when h
J ∈ (0, C0

√
r) for some constant C0 ∈ (0,∞) that is small

enough.

Moreover, there exist constants C1 ∈ (0, 1
4

√
3) and C2 ∈ (0,∞)

(depending on C0) such that

γ?−(r) ≥ 1
4Jr − C1J

√
r, γ?+(r) ≤ 1

4Jr + C2J
√
r.

These results are derived without Hypothesis (H), but it is shown
that Hypothesis (H) holds as soon as r ≥ 6.
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