
LECTURE 3

The Voter Model (VM)



§ TARGET

In this lecture we focus on the VM on the regular random graph.

We analyse how the fraction of discordant edges evolves over

time, in the limit as the size of the graph tends to infinity, on

three time scales: short, moderate, and long.

We also analyse what happens when the edges of the random

regular graph are randomly rewired while the VM is running. It

will turn out that the graph dynamics has several interesting

consequences.

Avena, Baldasso, Hazra, den Hollander, Quattropani 2022+2024
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SOCIAL NETWORK:

VOTER MODEL:
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Given a connected graph G = (V,E), the voter model is the

Markov process (ξt)t≥0 on state space {0,1}V where each vertex

carries opinion 0 or 1, at rate 1 selects one of the neighbouring

vertices uniformly at random, and adopts its opinion.

Write ξt = {ξt(i): i ∈ V } with ξt(i) the opinion at time t of vertex

i. We analyse the evolution of the fraction of discordant edges

DNt =
|DN

t |
M

, DN
t =

{
(i, j) ∈ E : ξt(i) 6= ξt(j)

}
,

where N = |V | and M = |E|. This is an interesting quantity

because it monitors the size of the boundary between the two

opinions.

3/25



The consensus time is defined as

τcons = inf{t ≥ 0: ξt(i) = ξt(j) ∀ i, j ∈ V }.

For finite graphs we know that τcons < ∞ with probability 1,

either at [0]N or at [1]N . The interest lies in determining the

relevant time scales on which consensus is reached, and how it

is reached.

Via time reversal, the voter model is dual to a system of coalescing
random walks, describing the genealogy of the opinions.
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§ VM ON THE COMPLETE GRAPH

As a prelude we look at the VM on the complete graph, for

which computations can be carried through explicitly. Indeed,

the number of 1-opinions at time t, given by

ONt =
∑
i∈V

ξt(i),

performs a continuous-time nearest-neighbour random walk on

the set {0, . . . , N} with transition rates

n→ n+ 1 at rate n(N − n) 1
N−1,

n→ n− 1 at rate (N − n)n 1
N−1.

This is the same as the Moran model from population genetics.
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Put ONt = 1
NO

N
t for the fraction of 1-opinions at time t. Then it

is well-known that
(ONsN)s≥0

converges in law as N →∞ to the Fisher-Wright diffusion (χs)s≥0
on [0,1] given by

dχs =
√

2χs(1− χs) dWs,

where (Ws)s≥0 is standard Brownian motion.

EXERCISE Give the proof of the above convergence.

The number of discordant edges equals

DN
t =

ONt (N −ONt )

2
.

Recall that DNt = 1
MD

N
t denotes the fraction of discordant edges

at time t, with M =
(
N
2

)
for the complete graph. 6/25



Since

DNt =
ONt (N −ONt )

N(N − 1)
=

N

N − 1
ONt (1−ONt ),

it follows that

(DNsN)s≥0

converges in law as N →∞ to the process(
χs(1− χs)

)
s≥0

.

In the mean-field setting of the complete graph,
the fraction of discordant edges is the product of
the fractions of the two opinions.

The latter property fails on non-complete graphs, in particular,
on random graphs. 7/25



§ VM ON THE RANDOM REGULAR GRAPH

Consider the regular random graph Gd,N = (V,E) of degree d ≥ 3,
consisting of

|V | = N vertices,

|E| = M =
dN

2
edges.

Denote the law of Gd,N by P.
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Chen, Choi, Cox 2016 consider the fraction of 1-opinions at time t,

ONt =
1

N

∑
i∈V

ξt(i),

and show that
(ONsN)s≥0

converges in law as N →∞ to the Fisher-Wright diffusion (χs)s≥0
given by

dχs =
√

2θdχs(1− χs) dWs,

where (Ws)s≥0 is standard Brownian motion, and

θd =
d− 2

d− 1
.

EXERCISE Use duality and the graphical representation to write
the probability that a fixed edge is discordant at time t in terms
of the meeting time of random walks. 9/25



§ MAIN THEOREMS

For u ∈ (0,1), let Pu be the law of (DNt )t≥0 starting from
[Bernoulli(u)]N .

THEOREM 3.1 Mean fraction on arbitrary time scales

Fix u ∈ (0,1). Then, for any tN ∈ [0,∞),∣∣∣∣Eu [DNtN ]− 2u(1− u) fd(tN) e−2θd
tN
N

∣∣∣∣ P−→ 0,

where

fd(t) = PTd(τmeet > t),

with PTd the law of two independent random walks on the infinite
d-regular tree Td starting from the endpoints of an edge.

10/25



The profile function fd is given by

fd(t) =
∞∑
k=0

e−2t(2t)k

k!

∑
l>bk−1

2 c

(2l
l

) 1

l + 1

(
1

d

)l+1(d− 1

d

)l
,

and satisfies fd(0) = 1 and fd(∞) = θd.

Note that Theorem 3.1 shows three times scales:

short: tN � N ,
moderate: tN � N ,
long: tN � N .
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A single simulation for N = 1000, d = 3, u = 0.5.

Left: In blue the fraction of discordant edges up to t = 5,

in red the function t 7→ 2u(1− u) fd(t).

Right: In blue the fraction of 1-opinions up to consensus,

in orange the fraction of discordant edges up to consensus.
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Scatter plot for the same simulation: the fraction of discordant edges versus
the fraction of the minority opinion.

The piece sticking out corresponds to short times. The curve in red is x 7→
x(1 − x), which says that the fraction of discordant edges is close to the

product of the fractions of the two opinions.
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THEOREM 3.2

Concentration on short time scales and scaling on moderate time scales

(i) Let tN be such that tN/N → 0. Then, for every ε > 0,

sup
η∈{0,1}V

Pη
(∣∣∣DNtN − Eη[DNtN ]

∣∣∣ > ε
) P−→ 0.

(ii) Let tN be such that tN/N → s ∈ (0,∞). Then, for every

u ∈ (0,1),

sup
x∈[0,1]

∣∣∣Pu (DNtN ≤ x)−Pu (χs(1− χs) ≤ x)
∣∣∣ P−→ 0.
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THEOREM 3.3 Uniform concentration on short time scales

Fix u ∈ (0,1). Then, for every δ, ε > 0,

Pu

(
sup

0≤t≤N1−δ

∣∣∣DNt − Eu[DNt ]
∣∣∣ > ε

)
P−→ 0.
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§ OPEN PROBLEMS

• We expect that Theorems 3.1–3.2 can be extended to non-
regular sparse random graphs. We do not have a conjecture
on how the function fd and the diffusion constant θd modify
in this more general setting.

• We expect that Theorem 3.3 can be strengthened to the
statement that, for every u ∈ (0,1), every tN such that
tN/N → 0 and every CN →∞,

Pu
( ∣∣∣DntN − Eu[DNtN ]

∣∣∣ > CN

√
tN/N

) P−→ 0.
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For directed sparse random graphs more can be said.

THEOREM 3.4
Avena, Capannoli, Hazra, Quattropani 2023, Capannoli 2024

Under mild conditions on the in-degrees din = (din
i )Ni=1 and the

out-degrees dout = (dout
i )Ni=1, the same scaling applies and an

explicit formula can be derived for the profile function fd and the
diffusion constant θdin,dout.

For instance, if din = dout (= Eulerian graph), then

θdin,dout =
(
m2
m2

1
− 1 +

√
1− 1

m1

)−1

with m1,m2 the first and the second moment of the limit of the
empirical degree distribution.
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§ IDEAS IN THE PROOF OF THE MAIN THEOREMS

The proofs are based on the classical notion of duality between
the voter model and a collection of coalescent random walks.

A crucial role is played by properties of coalescing random walks
that hold in mean-field geometries. In particular, Oliveira 2013

lim
N→∞

E[τcoal]

E[τπ⊗πmeet]
= 2,

where τcoal is the coalescence time of N random walks, each
starting from a different vertex, while τπ⊗πmeet is the meeting time
of two random walks, independently starting from the stationary
distribution π.

EXERCISE Explain the above result heuristically. Think about
what happens on the complete graph. 18/25



1. On time scales o(logN), below the typical distance between

two vertices, the analysis proceeds by coupling two random walks

on the d-regular random graph with two random walks on the

d-regular tree, both starting from adjacent vertices.

Because the tree is regular, the distance of the two random

walks can be viewed as the distance to the origin of a single

biased random walk on N0 starting from 1. Note that the same

does not hold when the tree is not regular.

EXERCISE

Compute τmeet on a Galton-Watson tree by reinterpreting the

problem as a single biased random walk on N0.
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2. On time scale Θ(logN), the scale of the typical distance
between two vertices, the coupling argument is combined with a
finer control of the two random walks on the d-regular random
graph.

LEMMA 3.5

There is a sequence of random variables (θd,N)N∈N converging
to θd such that

lim
N→∞

sup
t≥0

∣∣∣∣∣ P(τπ⊗πmeet > t)

exp[−2θd,N(t/N)]
− 1

∣∣∣∣∣ = 0 in probability.

Lemma 3.4, together with a first-moment argument, is enough
to compute the evolution of the expected number of discordant
edges on every time scale.
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3. In order to obtain concentration, a much deeper analysis

is required. Roughly, in order to have proper control on the

correlations between the discordant edges, we must analyse a

dual system of random walks whose number grows with N .

An upper bound is derived for the number of meetings of a poly-

logarithmic number of independent random walks evolving on

the random graph for a time N1−o(1).

This is exploited to derive an upper bound for the deviation

from the mean that is exponentially small in N and uniform in

time. This upper bound can be translated into a concentration

estimate by taking a union bound.
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§ REWIRING

What happens when the graph itself evolves over time, e.g. the
edges are randomly rewired?

Suppose that every pair of edges swaps endpoints at rate ν/2M
with ν ∈ (0,∞). With this choice of parametrization, the rate
at which a given edge is involved in a rewiring converges to ν as
N →∞. The voter model on this dynamic random graph evolves
as before: at rate 1 opinions are adopted along the edges that
are currently present.

In work in progress we show that Theorems 3.1-3.2 carry over
with θd replaced by θd,ν given by a continued fraction.
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THEOREM 3.6 work in progress

Let βd =
√
d− 1 and ρd = 2

d

√
d− 1. Then

θd,ν = 1−
∆d,ν

βd
with

∆d,ν =
1 |
| 2+ν
ρd

−
1 |
| 2+2ν

ρd

−
1 |
| 2+3ν

ρd

− . . .

EXERCISE
Compute limν→∞ θd,ν for fixed d.
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1. Since the d-regular random graph locally looks like a d-regular

tree, the proof proceeds by analysing the meeting time of two

random walks on a d-regular tree. On short to modest time

scales the two random walks do not notice the difference. Work

is needed to show that on longer time scales the approximation

is still good.

2. We replace rewiring of edges on the d-regular random graph

by disappearance of edges on the d-regular tree. This is a good

approximation because, as soon as one random walk moves along

a rewired edge in the d-regular random graph, it is thrown far

away from the other random walk and meeting becomes difficult.
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KEY OBSERVATION:

Because ν 7→ θd,ν is strictly increasing, the

dynamics speeds up consensus.
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